

AMIDINOYL ISOTHIOCYANATES IN THE SYNTHESIS
OF CONDENSED QUINAZOLINES. PREPARATION
OF *s*-TRIAZOLO[4,3-*c*]QUINAZOLINES

Štefan STANKOVSKÝ and Mária SOKYROVÁ

*Department of Organic Chemistry,
Slovak Institute of Technology, 812 37 Bratislava*

Received October 7th, 1983

The *s*-triazolo[4,3-*c*]quinazolines were obtained from 4-hydrazinoquinazolines by condensation with ethyl orthoformate. 4-Hydrazinoquinazolines were prepared by hydrazinolysis of corresponding quinazoline-4-thiones which in turn were obtained by isomerization of amidinoyl isothiocyanates. The infrared and ¹H NMR spectra of the final products are interpreted.

Quinazolines with a fused triazole ring of type *a* or *b* have been known for more than 50 years; those of the six possible types of *s*-triazoloquinazolines, the [1,5-*a*] and [4,3-*c*] were only recently synthesized. The latter was obtained¹ by reaction of 4-chloroquinazoline with 1-phenyltetrazole, which afforded 4-(3-tetrazolyl)quinazoline, the thermal decomposition of which yielded 3-phenyl-*s*-triazolo[4,3-*c*]quinazoline. The same compound was obtained by cyclization of 4-(benzoyl)hydrazinoquinazoline with phosphorus oxychloride², or by oxidative cyclization of the corresponding phenylhydrazone with ferric chloride³. A general method for the synthesis of condensed heterocycles, where the heterocycle is attached to C₍₃₎—C₍₄₎ of *s*-triazole is the reaction of 2-heteroarylhydrazine with aliphatic acids or their derivatives with orthoesters⁴. Thus, orthoesters give with 4-hydrazinoquinazolines substituted in position 2 by methyl, ethyl, phenyl, 2-furyl, or 4-pyridyl groups the remaining *s*-triazolo[4,3-*c*]quinazolines already reported⁵⁻⁷.

This paper concerns the preparation of title compounds substituted in position 5 by a sec-amino group; these compounds might display, by analogy with other condensed *s*-triazoles, a biological activity⁷.

The easily available amidinoyl isothiocyanates *I*, cyclizing spontaneously to 3*H*-quinazoline-4-thiones *II* were employed for construction of the quinazoline backbone. 4-Hydrazinoquinazolines *IIIa-IIIh* were obtained by a hydrazinolysis of the corresponding thiones, which, in contrast to their oxygen-containing analogues — quinazolones, underwent this reaction. Yields of 4-hydrazinoquinazolines were not high (Table I), since products of substitution of the sec-amino group with hydrazine were parallelly formed; this feature was observed with all experiments after longer-lasting heating. The triazole ring was obtained by condensation of 4-hydrazino-

quinazolines prepared in this way with ethyl orthoformate. As known, condensed *s*-triazoles easily undergo isomerization in the presence of acids, bases, or by heat following the mechanism analogous to that of Dimroth rearrangement⁶. To avoid this isomerization a small amount of anhydrous potassium carbonate was added

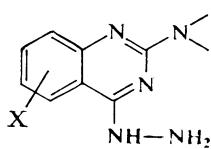
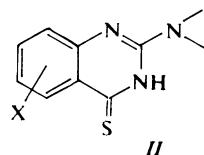
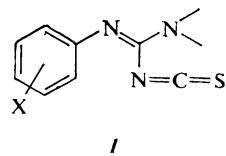





TABLE I
4-Hydrazinoquinazolines *IIIa*–*IIIh*

Compound	X N< ^a	Formula (<i>M</i> _r)	Calculated/Found			M.p., °C (yield, %)
			% C	% H	% N	
<i>IIIa</i>	H	<i>C</i> ₁₂ <i>H</i> ₁₅ <i>N</i> ₅ <i>O</i>	58.74	6.17	28.56	239–240
	Mo	(245.1)	58.80	6.35	28.30	(65)
<i>IIIb</i>	H	<i>C</i> ₁₂ <i>H</i> ₁₇ <i>N</i> ₅	62.30	7.41	30.29	169–170
	DE	(231.1)	62.17	7.53	30.11	(62)
<i>IIIc</i>	H	<i>C</i> ₂₀ <i>H</i> ₁₇ <i>N</i> ₅	73.36	5.24	21.40	208–210
	DP	(327.1)	73.10	5.36	21.19	(66)
<i>IIId</i>	H	<i>C</i> ₁₃ <i>H</i> ₁₈ <i>N</i> ₆	60.43	7.03	32.55	198–200
	MPA	(258.2)	60.23	7.15	32.67	(65)
<i>IIIE</i>	6-Br	<i>C</i> ₁₂ <i>H</i> ₁₄ <i>BrN</i> ₅ <i>O</i>	44.44	4.35	21.61	211–212
	Mo	(324.0)	44.35	4.50	21.48	(74)
<i>IIIf</i>	6-Br	<i>C</i> ₁₃ <i>H</i> ₁₆ <i>BrN</i> ₅	48.44	5.01	21.74	204–206
	Pi	(322.0)	48.53	5.19	21.52	(67)
<i>II Ig</i>	6-Cl	<i>C</i> ₁₂ <i>H</i> ₁₄ <i>ClN</i> ₅ <i>O</i>	51.50	5.05	25.04	200–202
	Mo	(279.6)	51.32	5.20	25.19	(74)
<i>II Ih</i>	5-CH ₃	<i>C</i> ₁₃ <i>H</i> ₁₇ <i>N</i> ₅ <i>O</i>	60.20	6.61	27.02	193–196
	Mo	(259.1)	60.07	6.50	28.18	(65)

^a Mo morpholine, DE diethylamine, DP diphenylamine, MPA N-methylpiperazine, Pi piperidine.

to the mixture to neutralize the possible traces of acid in ethyl orthoformate. Yields and melting points of *s*-triazolo[4,3-*c*]quinazolines are listed in Table II. Their IR spectra (Table III) show a very intense absorption band at 1610 cm^{-1} associated with $\nu(\text{C}=\text{N})$ vibrations. The high intensity of this band indicates that it cumulates the $\text{C}=\text{N}$ vibrations of both the triazole and pyrimidine rings. The ^1H NMR spectra (Table IV) reveal an easily distinguishable proton singlet of the triazole ring at δ 8.7 ppm shifted behind the aromatic ring proton-region. The presence of an *s*-triazolo-[1,5-*c*] derivative, which could originate through a possible isomerization, was not observed.

EXPERIMENTAL

The starting amidinoyl isothiocyanates were prepared according to⁸, substituted 3*H*-quinazoline-4-thiones *II* were synthesized by heating compound *I* in benzene or toluene (*IIc*) and crystallization from ethanol. The IR spectra of chloroform solutions were recorded with a UR-20 (Zeiss,

TABLE II
s-Triazolo[4,3-*c*]quinazolines *IVa*—*IVh*

Compound	X <i>N</i> < ^a	Formula (<i>M</i> _r)	Calculated/Found			M.p., °C (yield, %)
			% C	% H	% N	
<i>IVa</i>	H	$\text{C}_{13}\text{H}_{13}\text{N}_5\text{O}$ (255.1)	61.15	5.14	27.45	175—177
	Mo		61.23	5.30	27.30	(68)
<i>IVb</i>	H	$\text{C}_{13}\text{H}_{15}\text{N}_5$ (241.1)	64.70	6.27	29.04	113—115
	DE		64.51	6.11	29.30	(62)
<i>IVc</i>	H	$\text{C}_{21}\text{H}_{15}\text{N}_5$ (337.1)	74.75	4.49	20.77	185—187
	DP		74.58	4.51	20.97	(69)
<i>IVd</i>	H	$\text{C}_{14}\text{H}_{16}\text{N}_6$ (268.1)	62.65	6.02	31.33	190—192
	MPA		62.38	6.23	31.48	(58)
<i>IVe</i>	9-Br	$\text{C}_{13}\text{H}_{12}\text{BrN}_5\text{O}$ (334.0)	46.71	3.62	20.96	226—227
	Mo		46.60	3.51	20.73	(61)
<i>IVf</i>	9-Br	$\text{C}_{13}\text{H}_{13}\text{BrN}_6$ (333.0)	46.84	3.93	25.23	220—221
	Pi		46.51	3.70	25.17	(59)
<i>IVg</i>	9-Cl	$\text{C}_{13}\text{H}_{12}\text{ClN}_5\text{O}$ (289.5)	53.88	4.18	24.18	203—205
	Mo		53.71	4.11	24.30	(59)
<i>IVh</i>	10-CH ₃	$\text{C}_{14}\text{H}_{15}\text{N}_5\text{O}$ (269.1)	62.42	5.62	26.02	234—246
	Mo		62.51	5.40	26.19	(55)

^a For abbreviations see Table I.

Jena) spectrophotometer in the $1\ 600-700\text{ cm}^{-1}$ region in a 0.26 mm-NaCl cell. The ^1H NMR spectra of C^2HCl_3 solutions were measured with a Tesla BS 487 C apparatus operating at 80 MHz, tetramethylsilane was the internal reference.

Substituted 4-Hydrazinoquinazolines *IIIa*—*IIIh*

A solution of the respective quinazoline-4-thione (10 mmol) and hydrazine hydrate (80%, 5 ml) in 99%-ethanol (100 ml) was refluxed till the evolution of hydrogen sulfide ceased (5–10 h). The substituted quinazoline was filtered off after cooling, the filtrate was concentrated to its 1/5th and the precipitated second crop was filtered off. The combined product was crystallized from ethanol with an addition of charcoal.

Substituted *s*-Triazolo[4,3-*c*]quinazolines *IVa*—*IVh*

4-Hydrazinoquinazoline (2 mmol) *III*, redistilled ethyl orthoformate (10 ml) and anhydrous potassium carbonate (0.5 g) were refluxed for 3.5 h. The excess of potassium carbonate was filtered

TABLE III

Characteristic IR-absorption bands (cm^{-1}) of *s*-triazolo[4,3-*c*]quinazolines *IVa*—*IVh*

Compound	X $\text{N} < ^a$	$\nu(\text{C}=\text{C})$	$\nu(\text{C}=\text{N})$	$\nu\text{CH}_{\text{aliph}}$	$\nu\text{CH}_{\text{arom}}$
<i>IVa</i>	H	1 527	1 613	2 845	2 982
	Mo	1 561		2 882	
				2 917	
<i>IVb</i>	H	1 560	1 611	2 860	2 977
	DE	1 576		2 920	
<i>IVc</i>	H	1 560	1 613	—	2 980
	DP	1 587			
<i>IVd</i>	H	1 525	1 610	2 789	2 981
	MPA	1 540		2 840	
				2 927	
<i>IVe</i>	9-Br	1 528	1 614	2 850	2 987
	Mo	1 555		2 910	
<i>IVf</i>	9-Br	1 527	1 611	2 844	2 981
	Pi	1 561		2 930	
<i>IVg</i>	9-Cl	1 515	1 600	2 841	2 955
	Mo			2 881	
				2 905	
<i>IVh</i>	10-CH ₃	1 526	1 610	2 845	2 950
	Mo			2 883	

^a For abbreviations see Table I.

TABLE IV

¹H NMR signals (δ , ppm) of *s*-triazolo[4,3-*c*]quinazolines *IVa*–*IVh*

Compound	$X_{N<}^a$	H_T	H_{Ar}	H_S
<i>IVa</i>	H Mo	8.75 s	8.45–7.69	3.90 m; 3.60 m
<i>IVb</i>	H DE	8.75 s	8.52–7.35	3.57 m; 1.35 m
<i>IVc</i> ^b	H DF	8.60 s	8.50–7.30	—
<i>IVd</i>	H MPA	8.75 s	8.40–7.35	3.65 m; 2.65 m
<i>IVe</i>	9-Br Mo	8.77 s	8.65–7.50	3.95 m; 3.60 m
<i>IVf</i>	9-Br Pi	8.72 s	8.65–7.57	3.50 m; 1.77 m
<i>IVg</i>	9-Cl Mo	8.72 s	8.45–7.60	3.90 m; 3.55 m
<i>IVh</i> ^c	10-CH ₃ Mo	8.80 s	8.40–7.60	3.95 m; 3.70 m

^a For abbreviations see Table I; ^b 2.40 s, N—CH₃; ^c 3.15 s, N—CH₃.

off from the hot solution, the residue was evaporated and crystallized from benzene with an addition of charcoal.

REFERENCES

1. Huisgen R., Sturm H. J., Seidel M.: *Chem. Ber.* **94**, 1955 (1961).
2. Sidhu G. S., Rao N.: *Naturwissenschaften* **50**, 732 (1963).
3. Naqui S., Srinivasan V. R.: *J. Sci. Ind. Research* **21** B, 456 (1962).
4. Potts K. T.: *Chem. Rev.* **61**, 87 (1961).
5. Postovski I. Ya., Vereschagina N. N., Mertsalov S. L.: *Khim. Geterotsikl. Soedin.* **1966**, 130.
6. Potts K. T., Brugel E. G.: *J. Org. Chem.* **35**, 3448 (1970).
7. Chaurasia M. R., Sharma S. K.: *Heterocycles* **14**, 1761 (1980).
8. Stankovský Š., Martvoň A.: *Chem. Zvesti* **34**, 253 (1980).

Translated by Z. Votický.